# Common Semantic Segmentation ## Format specification CSS format specification is available [here](https://github.com/openvinotoolkit/open_model_zoo/blob/master/tools/accuracy_checker/accuracy_checker/annotation_converters/README.md#supported-converters). Supported annotation types: - `Masks` CSS dataset directory should have the following structure: ``` └─ Dataset/ ├── dataset_meta.json # a list of labels ├── images/ │ ├── .png │ ├── .png │ └── ... └── masks/ ├── .png ├── .png └── ... ``` To describe classes and colors, you should use [`dataset_meta.json`](/docs/data-formats/formats/index.rst#dataset-meta-info-file). ## Convert to other formats Datumaro can convert a CSS dataset into any other format [Datumaro supports](/docs/data-formats/formats/index.rst). To get the expected result, convert the dataset to formats that support the segmentation task (e.g. PASCAL VOC, CamVid, Cityscapes, etc.) There are several ways to convert a CSS dataset to other dataset formats using CLI: ``` bash datum convert -if common_semantic_segmentation -i \ -f cityscapes -o -- --save-media ``` Or, using Python API: ```python import datumaro as dm dataset = dm.Dataset.import_from('', 'common_semantic_segmentation') dataset.export('save_dir', 'camvid', save_media=True) ``` ## Examples Examples of using this format from the code can be found in [the format tests](https://github.com/open-edge-platform/datumaro/blob/develop/tests/unit/data_formats/test_common_semantic_segmentation_format.py)