============================ Level 12: Framework Conversion ============================ Datumaro allows seamless conversion of datasets to popular deep learning frameworks, such as PyTorch and TensorFlow. This is particularly useful when you are working with a dataset that needs to be used across different frameworks without manual reformatting. Datumaro provides the FrameworkConverter class, which can be used to convert a dataset for various tasks like classification, detection, and segmentation. Supported Tasks - Classification - Multilabel Classification - Detection - Instance Segmentation - Semantic Segmentation - Tabular Data .. tab-set:: .. tab-item:: Python With the PyTorch framework, you can convert a Datumaro dataset like this: .. code-block:: python from datumaro.plugins.framework_converter import FrameworkConverter from torchvision import transforms transform = transforms.Compose([transforms.ToTensor()]) dm_dataset = ... # Load your dataset here First, we have to specify the dataset, subset, and task .. code-block:: python multi_framework_dataset = FrameworkConverter(dm_dataset, subset="train", task="classification") train_dataset = multi_framework_dataset.to_framework(framework="torch", transform=transform) Through this, we convert the dataset to PyTorch format .. code-block:: python from torch.utils.data import DataLoader train_loader = DataLoader(train_dataset, batch_size=32) Now we can use the train_dataset with PyTorch DataLoader In this example: - `subset="train"` indicates that we are working with the training portion of the dataset. - `task="classification"` specifies that this is a classification task. - The dataset is converted to PyTorch-compatible format using the `to_framework` method.