otx.core.model.rotated_detection#
Class definition for rotated detection model entity used in OTX.
Classes
|
Rotated Detection model compatible for OpenVINO IR Inference. |
|
Rotated MaskRCNN model with EfficientNet backbone. |
|
Base class for the rotated detection models used in OTX. |
|
Rotated MaskRCNN model with ResNet50 backbone. |
- class otx.core.model.rotated_detection.OVRotatedDetectionModel(model_name: str, model_type: str = 'MaskRCNN', async_inference: bool = True, max_num_requests: int | None = None, use_throughput_mode: bool = True, model_api_configuration: dict[str, Any] | None = None, metric: MetricCallable = <function _rle_mean_ap_f_measure_callable>, **kwargs)[source]#
Bases:
OVInstanceSegmentationModelRotated Detection model compatible for OpenVINO IR Inference.
It can consume OpenVINO IR model path or model name from Intel OMZ repository and create the OTX detection model compatible for OTX testing pipeline.
- class otx.core.model.rotated_detection.RotatedMaskRCNNEfficientNet(label_info: LabelInfoTypes, input_size: tuple[int, int] = (1024, 1024), optimizer: OptimizerCallable = <function _default_optimizer_callable>, scheduler: LRSchedulerCallable | LRSchedulerListCallable = <function _default_scheduler_callable>, metric: MetricCallable = <function _rle_mean_ap_f_measure_callable>, torch_compile: bool = False, tile_config: TileConfig = TileConfig(enable_tiler=False, enable_adaptive_tiling=True, tile_size=(400, 400), overlap=0.2, iou_threshold=0.45, max_num_instances=1500, object_tile_ratio=0.03, sampling_ratio=1.0, with_full_img=False))[source]#
Bases:
RotatedMaskRCNNModel,MaskRCNNEfficientNetRotated MaskRCNN model with EfficientNet backbone.
- class otx.core.model.rotated_detection.RotatedMaskRCNNModel(label_info: LabelInfoTypes, input_size: tuple[int, int], optimizer: OptimizerCallable = <function _default_optimizer_callable>, scheduler: LRSchedulerCallable | LRSchedulerListCallable = <function _default_scheduler_callable>, metric: MetricCallable = <function _rle_mean_ap_f_measure_callable>, torch_compile: bool = False, tile_config: TileConfig = TileConfig(enable_tiler=False, enable_adaptive_tiling=True, tile_size=(400, 400), overlap=0.2, iou_threshold=0.45, max_num_instances=1500, object_tile_ratio=0.03, sampling_ratio=1.0, with_full_img=False))[source]#
Bases:
MaskRCNNBase class for the rotated detection models used in OTX.
- class otx.core.model.rotated_detection.RotatedMaskRCNNResNet50(label_info: LabelInfoTypes, input_size: tuple[int, int] = (1024, 1024), optimizer: OptimizerCallable = <function _default_optimizer_callable>, scheduler: LRSchedulerCallable | LRSchedulerListCallable = <function _default_scheduler_callable>, metric: MetricCallable = <function _rle_mean_ap_f_measure_callable>, torch_compile: bool = False, tile_config: TileConfig = TileConfig(enable_tiler=False, enable_adaptive_tiling=True, tile_size=(400, 400), overlap=0.2, iou_threshold=0.45, max_num_instances=1500, object_tile_ratio=0.03, sampling_ratio=1.0, with_full_img=False))[source]#
Bases:
RotatedMaskRCNNModel,MaskRCNNResNet50Rotated MaskRCNN model with ResNet50 backbone.