otx.data.dataset#
Module defines OTXDatasets.
Classes
|
OTXDataset class for anomaly classification task. |
|
OTXDataset class for multi-class classification task. |
|
OTXDataset class for H-label classification task. |
|
OTXDataset class for multi-label classification task. |
|
OTXDataset class for detection task. |
|
OTXDataset class for instance segmentation. |
|
OTXDataset class for keypoint detection task. |
|
OTXDataset class for segmentation task. |
OTX tile dataset factory. |
- class otx.data.dataset.OTXAnomalyDataset(task_type: OTXTaskType, dm_subset: Dataset, transforms: Compose | Callable | List[Callable] | dict[str, Compose | Callable | List[Callable]], max_refetch: int = 1000, image_color_channel: ImageColorChannel = ImageColorChannel.RGB, stack_images: bool = True, to_tv_image: bool = True, data_format: str = '')[source]#
Bases:
OTXDataset
OTXDataset class for anomaly classification task.
- class otx.data.dataset.OTXDetectionDataset(dm_subset: DatasetSubset, transforms: Transforms, max_refetch: int = 1000, image_color_channel: ImageColorChannel = ImageColorChannel.RGB, stack_images: bool = True, to_tv_image: bool = True, data_format: str = '')[source]#
Bases:
OTXDataset
,DataAugSwitchMixin
OTXDataset class for detection task.
- class otx.data.dataset.OTXHlabelClsDataset(**kwargs)[source]#
Bases:
OTXDataset
OTXDataset class for H-label classification task.
- class otx.data.dataset.OTXInstanceSegDataset(dm_subset: Dataset, transforms: Compose | Callable | List[Callable] | dict[str, Compose | Callable | List[Callable]], include_polygons: bool, **kwargs)[source]#
Bases:
OTXDataset
OTXDataset class for instance segmentation.
- Parameters:
dm_subset (DmDataset) – The subset of the dataset.
transforms (Transforms) – Data transformations to be applied.
include_polygons (bool) – Flag indicating whether to include polygons in the dataset. If set to False, polygons will be converted to bitmaps, and bitmaps will be used for training.
**kwargs – Additional keyword arguments passed to the base class.
- class otx.data.dataset.OTXKeypointDetectionDataset(dm_subset: DatasetSubset, transforms: Compose | Callable | List[Callable] | dict[str, Compose | Callable | List[Callable]], max_refetch: int = 1000, image_color_channel: ImageColorChannel = ImageColorChannel.RGB, stack_images: bool = True, to_tv_image: bool = True, data_format: str = '')[source]#
Bases:
OTXDataset
OTXDataset class for keypoint detection task.
- class otx.data.dataset.OTXMulticlassClsDataset(dm_subset: DatasetSubset, transforms: Transforms, max_refetch: int = 1000, image_color_channel: ImageColorChannel = ImageColorChannel.RGB, stack_images: bool = True, to_tv_image: bool = True, data_format: str = '')[source]#
Bases:
OTXDataset
OTXDataset class for multi-class classification task.
- property collate_fn: Callable#
Collection function to collect MulticlassClsDataEntity into MulticlassClsBatchDataEntity in data loader.
- class otx.data.dataset.OTXMultilabelClsDataset(**kwargs)[source]#
Bases:
OTXDataset
OTXDataset class for multi-label classification task.
- class otx.data.dataset.OTXSegmentationDataset(dm_subset: DmDataset, transforms: Transforms, max_refetch: int = 1000, image_color_channel: ImageColorChannel = ImageColorChannel.RGB, to_tv_image: bool = True, ignore_index: int = 255, data_format: str = '')[source]#
Bases:
OTXDataset
OTXDataset class for segmentation task.
- class otx.data.dataset.OTXTileDatasetFactory[source]#
Bases:
object
OTX tile dataset factory.
- classmethod create(task: OTXTaskType, dataset: OTXDataset, tile_config: TileConfig) OTXTileDataset [source]#
Create a tile dataset based on the task type and subset type.
- NOte: All task utilize the same OTXTileTrainDataset for training.
In testing, we use different tile dataset for different task type due to different annotation format and data entity.
- Parameters:
task (OTXTaskType) – OTX task type.
dataset (OTXDataset) – OTX dataset.
tile_config (TilerConfig) – Tile configuration.
- Returns:
Tile dataset.
- Return type:
OTXTileDataset